Unveiling the Mineral Content of Gracilaria sp. Using X-Ray Fluorescence (XRF): The Potential of Red Algae in Environmental Monitoring
DOI:
https://doi.org/10.70110/osse.v2i2.18Keywords:
Absorption, Gracilaria sp, Minerals, X-Ray FluorescenceAbstract
Background: Gracilaria sp. is a type of red algae that is easy to cultivate and produces agar. Gracilaria sp. thrives by absorbing nutrients from the water, and its thallus contains gel, which gives it a high water-binding capacity.
Aims: This study aims to identify the minerals absorbed by Gracilaria sp. using X-Ray Fluorescence (XRF) methods.
Result: According to the X-Ray Fluorescence (XRF) analysis, Gracilaria sp. contains 11 metal elements, with 6 primary elements including Potassium (K), Chlorine (Cl), Sulfur (S), Calcium (Ca), Silicon (Si), and Phosphate (P), as well as Iron (Fe), Magnesium (Mg), Bromine (Br), Manganese (Mn), and Strontium (Sr). Quantitatively, the dominant metal elements are Potassium (25.70%), Chlorine (22.90%), Sulfur (11.10%), Calcium (5.70%), Silicon (2.30%), and Phosphate (1.30%).
Conclusion: These findings indicate that Gracilaria sp. absorbs Potassium and Chlorine in significant amounts, with Sulfur being the next major element. Therefore, Gracilaria sp. can be used as an effective indicator for monitoring water quality and analyzing mineral distribution in aquatic ecosystems. Gracilaria sp. has potential applications in environmental remediation, particularly in addressing heavy metal pollution, and in the development of cultivation methods and practical uses in water quality management.
Downloads
References
Adam, M. A., Maftuch, M., Kilawati, Y., & Tahirah, S. N. (2018). Analysis of Heavy Metal Pollutant in Wangi River Pasuruan and Its Impact on Gambusia affinis. Jurnal Pembangunan Dan Alam Lestari, 9(2), 120–128. https://doi.org/10.21776/ub.jpal.2018.009.02.09
Adam, M. A., Widiastuti, I. M., Ernawati, Yayan, A. Y., Insivitawati, E., Yuliana, Pakaya, R. F., Soegianto, A., & Khumaidi, A. (2022). Analysis of White Feces Disease (WFD) caused by Vibrio sp. and Dinoflagellata in Vannamei Shrimp (Litopenaeus vannamei) in Brackishwater Culture Pond. Jurnal Ilmiah Perikanan Dan Kelautan, 14(1), 160–166. https://doi.org/http://doi. org/10.20473/jipk.v14i1.26684 Copyright
Agardh, J. G. (1837). Novae spesies algarum, quas in itinere ad oras maris rubri collegit Eduardus ruppell; cum observationibus nonnullis in species rariores antea cognitas. In Museum Senckenbergianum (pp. 169–174). Nature never deceives. https://www.biodiversitylibrary.org/page/45886470#page/193/mode/1up
Gardana, C., Scaglianti, M., Pietta, P., & Simonetti, P. (2007). Analysis of the polyphenolic fraction of propolis from different sources by liquid chromatography-tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 45(3), 390–399. https://doi.org/10.1016/j.jpba.2007.06.022
Handhani, A. R., Ambariyanto, A., & Supriyantini, E. (2017). Reduction of Pb concentration in seawater by seaweed gracilaria verrucosa. AACL Bioflux, 10(4), 703–709.
Haryanti, A. M., Darmanti, S.-, & Izzati, M.-. (2012). Kapasitas Penyerapan dan Penyimpanan Air pada Berbagai Ukuran Potongan Rumput Laut Gracilaria verrucosa sebagai Bahan Dasar Pupuk Organik. Bioma : Berkala Ilmiah Biologi, 10(1), 1. https://doi.org/10.14710/bioma.10.1.1-6
Ihsan, Y. N., Aprodita, A., Rustikawati, I., & Pribadi, T. D. K. (2015). Kemampuan Gracilaria sp. sebagai Agen Bioremediasi dalam Menyerap Logam Berat Pb. Jurnal Kelautan, 8(1), 10–18.
Ishak, A. R., Zuhdi, M. S. M., & Aziz, M. Y. (2020). Determination of lead and cadmium in tilapia fish (Oreochromis niloticus) from selected areas in Kuala Lumpur. Egyptian Journal of Aquatic Research, 46(3), 221–225. https://doi.org/10.1016/j.ejar.2020.06.001
Julyasih, K. S. M., Ristiati, N. P., & Arnyana, I. B. P. (2020). Potensi Alga Merah dan Alga Hijau untuk Menghambat Pertumbuhan Bakteri Eschericia coli. Agrotrop : Journal on Agriculture Science, 10(1), 11. https://doi.org/10.24843/ajoas.2020.v10.i01.p02
Komarawidjaja, W. (2005). Rumput laut Gracilaria sp. sebagai fitoremedian bahan organik perairan tambak budidaya. Jurnal Teknologi Lingkungan, 6(2), 410–415.
Maftuch, Kurniawati, I., Adam, A., & Zamzami, I. (2016). Antibacterial effect of Gracilaria verrucosa bioactive on fish pathogenic bacteria. Egyptian Journal of Aquatic Research, 42(4), 405–410. https://doi.org/10.1016/j.ejar.2016.10.005
Ningrum, R. A., Adam, M. A., Diniarti, N., Anjani, Y. D., & Maulana, I. (2024). Strategies for Effective Plankton Management in Kijing Taiwanese ( Anodonta woodiana , Lea ): A Study on Stocking Density and Aquaculture Techniques. Indonesian Journal of Limnology, 05(01), 1–10. https://doi.org/10.51264/inajl.v5i1.60
Prasedya, E. S., Syafitri, S. M., Geraldine, B. A. F. D., Hamdin, C. D., Frediansyah, A., Miyake, M., Kobayashi, D., Hazama, A., & Sunarpi, H. (2019). UVA photoprotective activity of brown macroalgae Sargassum cristafolium. Biomedicines, 7(4), 1–11. https://doi.org/10.3390/biomedicines7040077
Quatrin, A., Pauletto, R., Maurer, L. H., Minuzzi, N., Nichelle, S. M., Carvalho, J. F. C., Maróstica, M. R., Rodrigues, E., Bochi, V. C., & Emanuelli, T. (2019). Characterization and quantification of tannins, flavonols, anthocyanins and matrix-bound polyphenols from jaboticaba fruit peel: A comparison between Myrciaria trunciflora and M. jaboticaba. Journal of Food Composition and Analysis, 78(June 2018), 59–74. https://doi.org/10.1016/j.jfca.2019.01.018
Rohman, A., Restiana Wisnu, & Rejeki, S. (2018). Penentuan kesesuaian wilayah pesisir Muara Gembong Kabupaten Bekasi untuk lokasi pengembangan budidaya rumput laut dengan pemanfaatan sistem informasi geografis. Jurnal Sains Akuakultur Tropis, 2(1), 73–82.
Sartika, Adam, M. A., & Aryanti, D. (2024). Identification of Mineral Absorption in the Meat of Freshwater Kijing (Pilsbryoconcha exilis Lea) Using X-Ray Fluorescence (XRF). Applied Research in Science and Technology, 4(01). https://areste.org/index.php/oai
Su, G. L. S., Ramos, G., Barcelon, E. C. B., Federo, R., Su, M. L., & Benjamin, K. (2015). Lead Bioaccumulation and the Imposex Effect of Volema (Pugilina) Cochlidium in Bacoor Bay, Philippines. Asian Journal of Chemistry, 27(11), 4120–4124.
Syam, A. P., Suardi, & Syarifuddin, M. (2020). Analisis Pertumbuhan Dan Kandungan Agar Rumput Laut Gracilaria.sp Dengan Lokasi Berbeda Di Perairan Pesisir Kabupaten Luwu. Fisheries of Wallacea Journal, I(1), 24–30.
Tega, Y. R., Herawati, E. Y., & Kilawati, Y. (2023). Peran dan Keberadaan Enzim Metallothionein sebagai Pengikat Logam Berat Pb pada Pangkal dan Ujung Rumput Laut Gracilaria sp. Jurnal Lemuru, 5(1), 159–172. https://doi.org/10.36526/jl.v5i1.2440
Yanshin, N., Kushnareva, A., Lemesheva, V., Birkemeyer, C., & Tarakhovskaya, E. (2021). Chemical composition and potential practical application of 15 red algal species from the white sea coast (The arctic ocean). Molecules, 26(9). https://doi.org/10.3390/molecules26092489
Yunarty, Y., Kurniaji, A., Budiyati, B., Renitasari, D. P., & Resa, M. (2022). Karakteristik Kualitas Air dan Performa Pertumbuhan Udang Vaname Pola Intensif. Pena Akuatika : Jurnal Ilmiah Perikanan Dan Kelautan, 21(1), 71.
Zainuddin, F., & Nofianti, T. (2022). Pengaruh Nutrient N Dan P Terhadap Pertumbuhan Rumput Laut Pada Budidaya Sistem Tertutup. Jurnal Perikanan Unram, 12(1), 116–124. https://doi.org/10.29303/jp.v12i1.279
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Wanda Putri Azzahra, Moh. Awaludin Adam, Maya Fitriana

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.