

Open Soil Science and Environment

Volume 2, Issue 2, 58-64 2024

e_ISSN: 2988-022X https://soilenvironment.com/index.php/OSSE DOI: 10.70110/osse.v2i2.18

Unveiling the Mineral Content of *Gracilaria* sp. Using X-Ray Fluorescence (XRF): The Potential of Red Algae in Environmental Monitoring

Wanda Putri Azzahra^{1*}, Moh. Awaludin Adam², Maya Fitriana¹

- ¹ Department of Biotechnology, Faculty of Life Sciences and Technology, Sumbawa University of Technology, Sumbawa, 84371, Indonesia
- ² Research Center for Marine and Land Bioindustry, National Research and Innovation Agency, Lombok, West Nusa Tenggara, 83352, Indonesia

*Correspondence E-mail: wandaputrt@gmail.com

Article Info

Article history:

Received 10 October 2024 Revised 21 November 2024 Accepted 25 November 2024 Published 28 November 2024

Keywords:

Absorption Gracilaria sp Minerals X-Ray Fluorescence

Abstract

Background: *Gracilaria* sp. is a type of red algae that is easy to cultivate and produces agar. *Gracilaria* sp. thrives by absorbing nutrients from the water, and its thallus contains gel, which gives it a high waterbinding capacity.

Aims: This study aims to identify the minerals absorbed by *Gracilaria* sp. using X-Ray Fluorescence (XRF) methods.

Result: According to the X-Ray Fluorescence (XRF) analysis, *Gracilaria* sp. contains 11 metal elements, with 6 primary elements including Potassium (K), Chlorine (Cl), Sulfur (S), Calcium (Ca), Silicon (Si), and Phosphate (P), as well as Iron (Fe), Magnesium (Mg), Bromine (Br), Manganese (Mn), and Strontium (Sr). Quantitatively, the dominant metal elements are Potassium (25.70%), Chlorine (22.90%), Sulfur (11.10%), Calcium (5.70%), Silicon (2.30%), and Phosphate (1.30%).

Conclusion: These findings indicate that *Gracilaria* sp. absorbs Potassium and Chlorine in significant amounts, with Sulfur being the next major element. Therefore, *Gracilaria* sp. can be used as an effective indicator for monitoring water quality and analyzing mineral distribution in aquatic ecosystems. *Gracilaria* sp. has potential applications in environmental remediation, particularly in addressing heavy metal pollution, and in the development of cultivation methods and practical uses in water quality management.

To cite this article: Azzahra, W.P., Adam, M.A., Fitriana, M. (2024). Unveiling the mineral content of *gracilaria* sp. using x-ray fluorescence (xrf): The potential of red algae in environmental monitoring. *Open Soil Science and Environment*, *2*(2), 58-64.

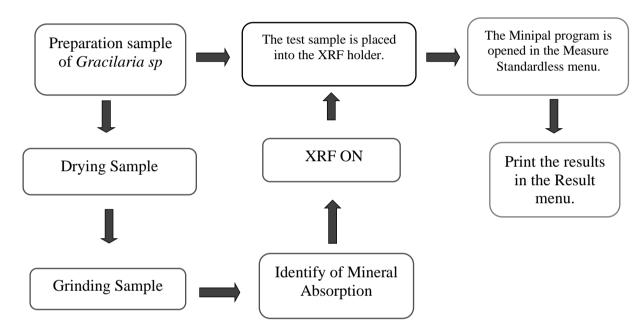
This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License ©2024 by author/s

1. Introduction

Indonesia, as an archipelagic country with 17,480 islands and a coastline of approximately 99,093 km, has about 70% of its area covered by oceans rich in various types of biological resources, including seaweed (Gardana et al., 2007; Quatrin et al., 2019). Seaweed is one of the abundant biological resources in Indonesian waters and belongs to benthic macroalgae that are attached to the bottom of aquatic environments (Haryanti et al., 2012). Seaweed does not have roots, stems and leaves, which are called thallus. Seaweed is an aquatic organism that can suffer significant negative impacts from water pollution, such as heavy metal contamination from Lead (Pb) (Ishak et al., 2020; Su et al., 2015), which can be easily absorbed and accumulated by organisms (Handhani et al., 2017). Seaweed can be used for phytoremediation. Phytoremediation is a method of bioremediation that utilizes plants to remove pollutants from contaminated water. The type often used is *Gracilaria* sp. (Komarawidjaja, 2005).

Gracilaria sp. belongs to the class of red algae (Rhodophyta), characterized by its red color caused by the pigment phycoerythrin. This red alga plays an important role in marine ecosystems, where it grows on hard seabeds such as rocks or coral reefs (Maftuch et al., 2016; Prasedya et al., 2019). Gracilaria sp. has a long, branched filament structure, with a thallus resembling fine red twigs, irregular branching concentrated at the base, and lateral branches extending like hair, measuring approximately 15-30 cm in length. This plant thrives by absorbing nutrients from the water and performing photosynthesis, thus its growth requires various physical and chemical factors (Rohman et al., 2018). Gracilaria sp. is a red algae rich in gel, with a high water-binding capacity, and is one of the most cultivated and traded types of seaweed due to its high economic value and promising market prospects, both domestically and internationally (Komarawidjaja, 2005). The absorption process is also influenced by the shape of the thallus, both at the base and the branches of Gracilaria sp. (Tega et al., 2023).

Naturally, the thallus at the base of *Gracilaria* sp. is attached to the substrate, resulting in a different absorption process compared to the tips of the thallus (Tega *et al.*, 2023). Appropriate water quality will have a positive impact on the productivity of aquaculture (Yunarty *et al.*, 2022). The success of seaweed cultivation is influenced by several factors such as the environment, seed quality, methods used, nutrient availability, and initial density or weight during maintenance (Agardh, 1837; Julyasih *et al.*, 2020). The cultivation of *Gracilaria* sp. can be conducted indoors. Indoor cultivation methods are more advantageous because water quality is easier to control, free from predators, and harvesting is simplified. The indoor method utilizes aquariums and seawater media with the addition of fertilizers as nutrient sources. The absorption of nutrients by the seaweed will enhance nutrient content and agar production (Adam et al., 2022; Ningrum et al., 2024).


The cultivation of *Gracilaria* sp. holds significant potential in the context of utilizing algae as a source of food and industry. This alga is known for its ability to absorb and accumulate various nutrients and minerals from the aquatic environment in which it grows. This process not only enhances cultivation productivity but can also affect the quality of the aquatic environment. However, the quality of *Gracilaria* sp. cultivation can be influenced by mineral contamination from polluted waters. To ensure that this alga is free from harmful elements that could jeopardize consumer health, it is important to analyze its mineral absorption. This analysis will provide a clearer picture of the mineral composition of the algae (Yanshin *et al.*, 2021). Although many studies have been conducted on mineral analysis techniques in various marine organisms, research on micro and macro mineral absorption by *Gracilaria* sp. remains limited. One of the mineral analysis techniques that can be used for *Gracilaria* sp. is X-Ray Fluorescence (XRF). This study aims to identify the mineral profile of *Gracilaria* sp. using XRF technology, with the hope of providing new insights into the nutritional aspects and safety of this algae. The data obtained from this analysis is expected to help optimize the cultivation of *Gracilaria* sp. and ensure that the cultivation results are safe and of high quality for consumption.

2. Methods

The research material used is *Gracilaria* sp., obtained from a cultivation pond at the National Research Agency (BRIN), North Lombok, West Nusa Tenggara, as shown in Figure 1. *Gracilaria* sp. is washed with water to remove dirt. Next, it is dried at a temperature of about 40-60°C. After the initial drying process, the samples are placed in an oven for further drying until all moisture is eliminated. Once the drying is complete, the samples are ground into a fine powder using a mortar grinder, and then sifted to obtain the *Gracilaria* sp. flour.

Figure 1. Sample Preparation of *Gracilaria* sp. Harvested *Gracilaria* sp. after 4 weeks (left); dried *Gracilaria* sp. (middle); *Gracilaria* sp. powder after grinding (right)

Figure 2. Procedure for Preparation and Identification of Minerals in *Gracilaria* sp.

Subsequently, the identification of absorbed minerals in the samples is carried out quantitatively using the X-Ray Fluorescence method (ED-XRF type) from Rigaku NexCG, as shown in Figure 3. The XRF testing procedure involves several steps. The first step is preparing the XRF device by turning it on, activating the HT On (X-Ray On), opening the Minipal program on the computer, and waiting approximately 10-15 minutes or until the device is fully operational. The next step involves preparing the powder and solid samples. This is done by using a holder fitted with a special plastic for XRF and placing the test sample into the holder. The final step is measurement, which involves inserting the sample into the XRF device, opening the Minipal program in the Measure Standardless menu, and entering the name of the sample to be measured in the Sample Ident and Measure fields (according to the sample order). After a few minutes, the analysis results will be displayed in the Result menu, and the desired results can be printed.

Figure 3. XRF with ED-XRF type

3. Results and discussion

The results of the X-Ray Fluorescence spectrophotometer analysis of *Gracilaria* sp. are presented in Table 1.

Table 1. Mineral Absorption in *Gracilaria sp.*

No	Compound Names	XRF Result
1	Kalium	$\sqrt{}$
2	Klorin	
3	Sulfur	
4	Kalsium	$\sqrt{}$
5	Silikon	
6	Fosfat	
7	Besi	$\sqrt{}$
8	Magnesium	
9	Bromin	
10	Mangan	$\sqrt{}$
11	Strontium	$\sqrt{}$

The quantitative analysis results of X-Ray Fluorescence for *Gracilaria* sp. identified 11 minerals. Based on the data obtained in the table, the 11 identified minerals include Calcium, Chlorine, Sulfur, Silicon, Phosphorus, Iron, Magnesium, Bromine, Manganese, and Strontium. Several metal minerals such as K, Ca, Fe, Mg, Mn, and Sr are present. In this case, Chlorine (Cl), Iron (Fe), Manganese (Mn), and Bromine (Br) are considered heavy metals and fall into the category of microminerals. *Gracilaria* sp. thrives by absorbing nutrients from the water and performing photosynthesis, so its growth requires various physical and chemical factors in the aquatic environment, such as water movement, temperature, salinity, nitrate, phosphate levels, and sunlight (Rohman *et al.*, 2018). The analysis results of XRF show the six dominant minerals contained in *Gracilaria* sp., as presented in Table 2.

Table 2. Percentage of Dominant Mineral Absorption in *Gracilaria sp.*

1 46 2 2 1 0 1 0 0 1 1 4 1 4 1 1 1 1 1 1 1 1 1 1				
No	Chemical Coumpounds	Formula	Value	
1	Kalium	K	25.70%	
2	Klorin	Cl	22.90%	
3	Sulfur	S	11.10%	
4	Kalsium	Ca	5.70%	
5	Silikon	Si	2.30%	
6	Fosfat	Р	1.30%	

At the molecular level, the mineral composition in *Gracilaria* sp. is influenced by various factors, including the availability of nutrients in the water, salinity, environmental pH, growth conditions such as light and temperature, and interactions with microorganisms. Based on the data in Table 2,

the three most abundant minerals in *Gracilaria* sp. are K at 25.70%, Cl at 22.90%, and S at 11.10%, followed by other minerals such as Ca at 5.70%, Si at 2.30%, and P at 1.30%. In this table, the values of K at 25.70%, Cl at 22.90%, and S at 11.10% show a very dominant presence compared to the others, especially K. Potassium (K) is an essential nutrient for plant growth and plays a crucial role in *Gracilaria* sp. Potassium also enhances the resilience of *Gracilaria* sp. to environmental stressors, including changes in salinity and nutrient deficiencies, and helps the algae combat pathogens. By regulating osmotic mechanisms, potassium contributes to water use efficiency, allowing the algae to adapt to fluctuations in the marine environment. Furthermore, in the cultivation of *Gracilaria* sp., adequate potassium availability can improve the quality and biomass size of the algae (Yunarty et al., 2022). The quantitative XRF analysis identified this element in the samples, with the highest percentage (Adam et al., 2018; Sartika et al., 2024). The presence of K in the samples serves as a precursor for protein and carbohydrate formation, which are essential for the metabolism and energy production of the algae. Potassium aids in regulating osmotic pressure within the cells, maintaining the water balance that is vital for cellular stability (Yunarty et al., 2022). In addition to potassium, seaweeds like *Gracilaria* sp. also contain various important micronutrients such as Chlorine (Cl), Iron (Fe), Manganese (Mn), and Bromine (Br). These micronutrients are required in small amounts but play crucial roles in various biological processes (Julyasih et al., 2020; Maftuch et al., 2016). A deficiency in any of these micronutrients can lead to growth delays and other physiological problems in the algae. Therefore, meeting the micronutrient requirements is essential to ensure optimal growth and development of *Gracilaria* sp. (Yunarty et al., 2022).

In the research data, the micronutrients Chlorine (Cl), Iron (Fe), Manganese (Mn), and Bromine (Br) were identified in Gracilaria sp. with specific concentrations. Chlorine (Cl) was found in significant amounts, playing a role in the electrolyte balance and digestive functions of the algae. The substantial presence of chlorine in *Gracilaria* sp. highlights the importance of this element in supporting biochemical processes and the health of the algae, and it can be used as an indicator to assess the water quality in which the algae grow. Iron (Fe) is recorded as an essential micronutrient that supports metabolic processes in *Gracilaria* sp., including photosynthesis, respiration, and as a component of cellular proteins (Syam et al., 2020). Additionally, Fe also assists in nitrogen metabolism and carbon assimilation, which are crucial processes in seaweed growth (Zainuddin & Nofianti, 2022). Iron is a vital nutrient for plants as it is needed for chlorophyll synthesis, plays a significant role in energy transfer, is part of several enzymes and proteins, and functions in respiration and plant metabolism, as well as being involved in nitrogen fixation (Zainuddin & Nofianti, 2022). Manganese (Mn) was also identified with important concentrations, functioning as an activator of several enzymes, including oxidases, peroxidases, dehydrogenases, and kinases that are involved in photosynthesis and nitrate reduction (Syam et al., 2020). Fe acts as an enzyme catalyst in chlorophyll formation, while Mn is involved in enzyme activation (Syam et al., 2020). Meanwhile, Bromine (Br), although present in relatively smaller amounts, still plays a role in various important biological processes. The presence and levels of these micronutrients in *Gracilaria* sp. provide valuable insights into the health and nutritional status of the algae and can be used as indicators to assess water quality, manage aquatic environmental conditions, and apply environmental remediation, especially in addressing heavy metal pollution and developing cultivation methods. Plants capable of remediating by absorbing, accumulating, and releasing contaminants from the environment are known as hyperaccumulator plants (Ihsan et al., 2015). These plants have an extraordinary capacity to absorb heavy metals and other contaminants at concentrations much higher than ordinary plants. One example of a hyperaccumulator is the seaweed Gracilaria sp. This seaweed not only absorbs heavy metals from polluted waters but also can accumulate significant amounts of nutrients and contaminants, making it an effective choice in phytoremediation techniques. With its significant ability to cleanse water from heavy metal pollution, Gracilaria sp. plays an essential role in environmental remediation efforts and water quality management.

4. Conclusion

The research results show that the mineral analysis of *Gracilaria* sp. using X-Ray Fluorescence (XRF) identified 11 minerals absorbed by the algae. Among these minerals, the six most dominant are Potassium (25.70%), Chlorine (22.90%), Sulfur (11.10%), Calcium (5.70%), Silicon (2.30%), and

Phosphate (1.30%). Potassium and Chlorine are the primary constituents in *Gracilaria* sp. *Gracilaria* sp. is potential to be used as environmental bioindicators with their ability to absorb pollutants and respond to environmental changes, for example in monitoring water quality, detecting pollution and evaluating ecosystem health.

Acknowledgment

The authors acknowledge the facilities, scientific and technical support from Advanced Chemical Characterization Laboratory, National Research and Innovation Agency through E- Layanan Sains – BRIN.

References

- Adam, M. A., Maftuch, M., Kilawati, Y., & Tahirah, S. N. (2018). Analysis of Heavy Metal Pollutant in Wangi River Pasuruan and Its Impact on Gambusia affinis. *Jurnal Pembangunan Dan Alam Lestari*, 9(2), 120–128. https://doi.org/10.21776/ub.jpal.2018.009.02.09
- Adam, M. A., Widiastuti, I. M., Ernawati, Yayan, A. Y., Insivitawati, E., Yuliana, Pakaya, R. F., Soegianto, A., & Khumaidi, A. (2022). Analysis of White Feces Disease (WFD) caused by Vibrio sp. and Dinoflagellata in Vannamei Shrimp (Litopenaeus vannamei) in Brackishwater Culture Pond. *Jurnal Ilmiah Perikanan Dan Kelautan*, 14(1), 160–166. https://doi.org/http://doi.org/10.20473/jipk.v14i1.26684 Copyright
- Agardh, J. G. (1837). Novae spesies algarum, quas in itinere ad oras maris rubri collegit Eduardus ruppell; cum observationibus nonnullis in species rariores antea cognitas. In *Museum Senckenbergianum* (pp. 169–174). Nature never deceives. https://www.biodiversitylibrary.org/page/45886470#page/193/mode/1up
- Gardana, C., Scaglianti, M., Pietta, P., & Simonetti, P. (2007). Analysis of the polyphenolic fraction of propolis from different sources by liquid chromatography-tandem mass spectrometry. *Journal of Pharmaceutical and Biomedical Analysis*, 45(3), 390–399. https://doi.org/10.1016/j.jpba.2007.06.022
- Handhani, A. R., Ambariyanto, A., & Supriyantini, E. (2017). Reduction of Pb concentration in seawater by seaweed *Gracilaria* verrucosa. *AACL Bioflux*, *10*(4), 703–709.
- Haryanti, A. M., Darmanti, S.-, & Izzati, M.-. (2012). Kapasitas Penyerapan dan Penyimpanan Air pada Berbagai Ukuran Potongan Rumput Laut *Gracilaria* verrucosa sebagai Bahan Dasar Pupuk Organik. *Bioma: Berkala Ilmiah Biologi, 10*(1), 1. https://doi.org/10.14710/bioma.10.1.1-6
- Ihsan, Y. N., Aprodita, A., Rustikawati, I., & Pribadi, T. D. K. (2015). Kemampuan *Gracilaria* sp. sebagai Agen Bioremediasi dalam Menyerap Logam Berat Pb. *Jurnal Kelautan*, 8(1), 10–18.
- Ishak, A. R., Zuhdi, M. S. M., & Aziz, M. Y. (2020). Determination of lead and cadmium in tilapia fish (Oreochromis niloticus) from selected areas in Kuala Lumpur. *Egyptian Journal of Aquatic Research*, 46(3), 221–225. https://doi.org/10.1016/j.ejar.2020.06.001
- Julyasih, K. S. M., Ristiati, N. P., & Arnyana, I. B. P. (2020). Potensi Alga Merah dan Alga Hijau untuk Menghambat Pertumbuhan Bakteri Eschericia coli. *Agrotrop : Journal on Agriculture Science*, 10(1), 11. https://doi.org/10.24843/ajoas.2020.v10.i01.p02
- Komarawidjaja, W. (2005). Rumput laut *Gracilaria* sp. sebagai fitoremedian bahan organik perairan tambak budidaya. *Jurnal Teknologi Lingkungan*, 6(2), 410–415.
- Maftuch, Kurniawati, I., Adam, A., & Zamzami, I. (2016). Antibacterial effect of *Gracilaria* verrucosa bioactive on fish pathogenic bacteria. *Egyptian Journal of Aquatic Research*, 42(4), 405–410. https://doi.org/10.1016/j.ejar.2016.10.005
- Ningrum, R. A., Adam, M. A., Diniarti, N., Anjani, Y. D., & Maulana, I. (2024). Strategies for Effective Plankton Management in Kijing Taiwanese (Anodonta woodiana, Lea): A Study on Stocking Density and Aquaculture Techniques. *Indonesian Journal of Limnology*, 05(01), 1–10. https://doi.org/10.51264/inajl.v5i1.60
- Prasedya, E. S., Syafitri, S. M., Geraldine, B. A. F. D., Hamdin, C. D., Frediansyah, A., Miyake, M., Kobayashi, D., Hazama, A., & Sunarpi, H. (2019). UVA photoprotective activity of brown macroalgae Sargassum cristafolium. *Biomedicines*, 7(4), 1–11. https://doi.org/10.3390/biomedicines7040077
- Quatrin, A., Pauletto, R., Maurer, L. H., Minuzzi, N., Nichelle, S. M., Carvalho, J. F. C., Maróstica, M. R.,

- Rodrigues, E., Bochi, V. C., & Emanuelli, T. (2019). Characterization and quantification of tannins, flavonols, anthocyanins and matrix-bound polyphenols from jaboticaba fruit peel: A comparison between Myrciaria trunciflora and M. jaboticaba. *Journal of Food Composition and Analysis*, 78(June 2018), 59–74. https://doi.org/10.1016/j.ifca.2019.01.018
- Rohman, A., Restiana Wisnu, & Rejeki, S. (2018). Penentuan kesesuaian wilayah pesisir Muara Gembong Kabupaten Bekasi untuk lokasi pengembangan budidaya rumput laut dengan pemanfaatan sistem informasi geografis. *Jurnal Sains Akuakultur Tropis*, 2(1), 73–82.
- Sartika, Adam, M. A., & Aryanti, D. (2024). Identification of Mineral Absorption in the Meat of Freshwater Kijing (Pilsbryoconcha exilis Lea) Using X-Ray Fluorescence (XRF). *Applied Research in Science and Technology*, 4(01). https://areste.org/index.php/oai
- Su, G. L. S., Ramos, G., Barcelon, E. C. B., Federo, R., Su, M. L., & Benjamin, K. (2015). Lead Bioaccumulation and the Imposex Effect of Volema (Pugilina) Cochlidium in Bacoor Bay, Philippines. *Asian Journal of Chemistry*, *27*(11), 4120–4124.
- Syam, A. P., Suardi, & Syarifuddin, M. (2020). Analisis Pertumbuhan Dan Kandungan Agar Rumput Laut *Gracilaria*.sp Dengan Lokasi Berbeda Di Perairan Pesisir Kabupaten Luwu. *Fisheries of Wallacea Journal*, *I*(1), 24–30.
- Tega, Y. R., Herawati, E. Y., & Kilawati, Y. (2023). Peran dan Keberadaan Enzim Metallothionein sebagai Pengikat Logam Berat Pb pada Pangkal dan Ujung Rumput Laut *Gracilaria* sp. *Jurnal Lemuru*, *5*(1), 159–172. https://doi.org/10.36526/jl.v5i1.2440
- Yanshin, N., Kushnareva, A., Lemesheva, V., Birkemeyer, C., & Tarakhovskaya, E. (2021). Chemical composition and potential practical application of 15 red algal species from the white sea coast (The arctic ocean). *Molecules*, *26*(9). https://doi.org/10.3390/molecules26092489
- Yunarty, Y., Kurniaji, A., Budiyati, B., Renitasari, D. P., & Resa, M. (2022). Karakteristik Kualitas Air dan Performa Pertumbuhan Udang Vaname Pola Intensif. *Pena Akuatika: Jurnal Ilmiah Perikanan Dan Kelautan, 21*(1), 71.
- Zainuddin, F., & Nofianti, T. (2022). Pengaruh Nutrient N Dan P Terhadap Pertumbuhan Rumput Laut Pada Budidaya Sistem Tertutup. *Jurnal Perikanan Unram*, 12(1), 116–124. https://doi.org/10.29303/jp.v12i1.279